Образовательный минимум

Четверть	2
Предмет	Физика
Класс	11

Электродинамика

Электромагнитными колебаниями называются периодические изменения q, I, U, ε .

Колебательный контур – устройство для получения свободных ЭМК.

Электрическая цепь колебательного контура состоит из конденсатора и катушки индуктивности.

Гармонические колебания - периодические изменения физической величины в зависимости от времени, происходящие по закону sin или cos.

А амплитуда -тах значение периодически меняющейся физической величины.

Т *период* - время одного полного колебания.

у частота - количество полных колебаний за единицу времени.

Уравнения, описывающие процессы в колебательном контуре

$$q = q_m \cos \omega t$$
 $i = I_m \cos(\omega t + \frac{\pi}{2})$

Формула Томсона $T=2\pi\sqrt{LC}$.

Переменный электрический ток представляет собой вынужденные электромагнитные колебания.

$$u = U_{\text{max}} \sin(\omega t)$$

$$i = I_{\text{max}} \sin(\omega t \pm \varphi_c)$$

 $arPhi_{\scriptscriptstyle \mathcal{C}}$ - сдвиг фаз между колебаниями силы тока и напряжения

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

$$I_{\partial} = \frac{I_{\text{max}}}{\sqrt{2}}$$
 $U_{\partial} = \frac{U_{\text{max}}}{\sqrt{2}}$

частотой свободных колебаний этой системы.

Активное сопротивление **Емкостное сопротивление**

Индуктивное сопротивление

 $x_{I} = L\omega$

$$R = \rho \frac{l}{S}$$

$$x_c = \frac{1}{\omega c}$$

Резонансом называется резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменений внешней силы, действующей на систему, с собственной